Krylov Subspace Methods for Linear Systems with Tensor Product Structure
نویسندگان
چکیده
The numerical solution of linear systems with certain tensor product structures is considered. Such structures arise, for example, from the finite element discretization of a linear PDE on a d-dimensional hypercube. Linear systems with tensor product structure can be regarded as linear matrix equations for d = 2 and appear to be their most natural extension for d > 2. A standard Krylov subspace method applied to such a linear system suffers from the curse of dimensionality and has a computational cost that grows exponentially with d. The key to breaking the curse is to note that the solution can often be very well approximated by a vector of low tensor rank. We propose and analyse a new class of methods, so called tensor Krylov subspace methods, which exploit this fact and attain a computational cost that grows linearly with d.
منابع مشابه
An Error Analysis of Galerkin Projection Methods for Linear Systems with Tensor Product Structure
Recent results on the convergence of a Galerkin projection method for the Sylvester equation are extended to more general linear systems with tensor product structure. In the Hermitian positive definite case, explicit convergence bounds are derived for Galerkin projection based on tensor products of rational Krylov subspaces. The results can be used to optimize the choice of shifts for these me...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملTensor-Krylov methods for large nonlinear equations
In this paper, we describe tensor methods for large systems of nonlinear equations based on Krylov subspace techniques for approximately solving the linear systems that are required in each tensor iteration. We refer to a method in this class as a tensor-Krylov algorithm. We describe comparative testing for a tensor-Krylov implementation versus an analogous implementation based on a Newton-Kryl...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملA Preconditioned Low-Rank Projection Method with a Rank-Reduction Scheme for Stochastic Partial Differential Equations
In this study, we consider the numerical solution of large systems of linear equations obtained from the stochastic Galerkin formulation of stochastic partial differential equations (PDEs). We propose an iterative algorithm that exploits the Kronecker product structure of the linear systems. The proposed algorithm efficiently approximates the solutions in low-rank tensor format. Using standard ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 31 شماره
صفحات -
تاریخ انتشار 2010